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Abstract
We study the conductance through long and ultra-clean one-dimensional conductors and find a
conductance anomaly at low charge densities—similar to the so-called 0.7 structure found in
short constrictions. Our wires, afforded by the cleaved edge overgrowth technique, allow a
quantitative study of this phenomenon in long wires. We find that this anomaly occurs
whenever the kinetic energy provided to the carriers exceeds the Fermi energy. In this regime,
the measured conductance is found to exceed the value naively expected from non-interacting
models.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The 0.7 structure is a conductance anomaly observed in
ballistic one-dimensional constrictions [1] and wires [2]. In
such semiconductor devices, one dimensionality is achieved
by confinement of charge in the two spatial directions
perpendicular to the direction of current flow—leading to a set
of quasi-one dimensional subbands separated by energy gaps.
The conductance in such systems has been studied extensively
both experimentally and theoretically over the years. The
hallmark of the behaviors found is the quantization of the
linear conductance [3], which equals the conductance quantum
g0 = 2e2/h multiplied by the number of available transverse
modes (spin degeneracy is included explicitly in g0). In
a real device, the occupation of these transverse modes is
achieved by controlling the charge density. Successive modes
are populated as the Fermi energy is increased to surmount the
subband energy gaps at low temperatures. Thus, a plot of the
conductance versus density exhibits a series of conductance
steps. The 0.7 structure is a deviation from this regular
behavior [1, 2, 4]. At elevated temperatures, a weak additional
conductance step is observed at low electron densities. The
value of the conductance in this density range equals roughly
70% of the quantized plateau value—hence the name of the
phenomenon. The same conductance glitch is also observed
in the differential conductance in the presence of a large
source–drain bias. Here, however, in addition to a differential
conductance step at ∼0.7g0, yet another flat appears at even

1 Address for correspondence.

lower densities with a differential conductance of some 25–
50% of g0.

We have studied this phenomenon in long wires afforded
by a unique crystal growth technique detailed below. The
geometry of our wires, with a length to diameter ratio in
the 200–600 range, is more amenable to analysis in terms
of a uniform one-dimensional charge density inside the
device. This advantage has facilitated a quantitative analysis
of the observed behaviors, the conclusions of which can be
summarized as follows:

(a) The 0.7 structure is a property of long wires. Long both
from the geometrical perspective (large aspect ratio) and
also in the sense that there are numerous (up to ∼100)
electrons in the wire under the conditions that the 0.7
structure is observed. Its main characteristics appear to be
dependent on charge density in the wire and not its length.

(b) The 0.7 structure occurs at densities low enough such that
the Fermi energy is much smaller than temperature. The
parameter, T/TF (with TF the Fermi temperature) is found
to exceed ∼2 1

2 in this regime—far from being a small
parameter.

(c) When induced by increasing the source–drain bias at low
temperatures, the 0.7 structure commences when the bias
greatly overwhelms the Fermi energy.

(d) Both in the low-temperature high-bias case and in
the high-temperature linear-response case, the measured
differential conductance is larger than the value expected
from non-interacting electrons of this density when
propagating through a perfect (reflection free) wire.
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These findings stipulate contrasting the data with models
that account for these unusual circumstances: either very
far from equilibrium or at high temperatures—comparable
or exceeding the Fermi energy. Clearly, models that ignore
correlations are insufficient, as their predictions underestimate
the observed conductance. Other models brought forth in
recent years [5] are to a large extent unsuited for the extreme
conditions we find to be relevant—because they are tailored
either for short constrictions or for lower temperatures than
the range studied here. On the other hand, analysis of the
behavior of a one-dimensional electron liquid in these regimes
is difficult and available knowledge is limited.

Even with wires in the limit of zero temperature
difficulties arise due to the inadequacy of Fermi liquid
theory [6] in one dimension; the decay rate of Fermi
liquid quasi-particles as estimated by the Fermi golden rule
vanishes—invalidating such an approach. This difficulty
can be overcome by adopting a linear approximation for
the dispersion relation. Then the problem can be solved
exactly to result in the celebrated Tomonaga–Luttinger
model [7]. The resulting unusual liquid possesses no single
particle excitations, replaced by collective ones in the form
of charge and spin density waves. However, a linear
dispersion approximation is inadequate with temperature or
bias exceeding the Fermi energy, where the 0.7 structure is
observed. A recent work [8] has shown that accounting
for a dispersion curvature perturbatively (in T/TF) already
leads to surprising consequences as Fermi liquid like features
reappear in the spectral function, coexisting with Luttinger
liquid signatures.

Another difficulty with the parameters range of interest
here is our poor understanding of relaxation mechanisms and
the resultant steady state distribution function in a long wire.
In the absence of any relaxation, the distribution function
inside a ballistic wire will encompass two separate Fermi
distribution functions for left and right propagating electrons,
each species being in thermal equilibrium with the reservoir
it emanated from. In a diffusive metal, two-particle e–e
scattering is an effective channel to relax such a distribution
function [9], ultimately resulting in a Fermi function of an
elevated (position dependent) electronic temperature. Inelastic
processes involving phonons further relax the distribution
function, bringing the electron temperature closer to the lattice
one. With one-dimensional wires, however, it is well known
that because of momentum and energy conservation two body
e–e collisions cannot relax the distribution function, as they
merely amount to swapping the two electrons. Still, an
elevated temperature could facilitate three body collisions that
do not suffer from this shortcoming and may modify the
distribution function. The leading correction (again in T/TF)
to the conductance due to such three particle collisions was
recently calculated in [10]. The authors find conductance
suppression to values below the non-interacting one—opposite
to the observed 0.7 structure. The discrepancy is not surprising,
as the small parameter used in the calculation is not at all small
in the experiments—being larger than 2.5 in the density range
where the 0.7 structure is observed.

Evaluating the steady state distribution function in a long
one-dimensional wire and predicting its transport properties

far from the low-temperature linear-response limit while
accounting for a realistic parabolic dispersion relation remains
challenging. The observed phenomena are richer than naively
expected with the 0.7 structure discussed here representing one
example of a phenomenon occurring in reduced dimensional
mesoscopic structures under such circumstances.

The reminder of this manuscript is arranged as follows;
in section 2 we describe the devices used, their fabrication
technique and some of their low temperature and linear
response characteristics. In section 3 we describe the 0.7
structure as observed in the non-linear response of our wires
at low temperatures. Section 4 describes the results obtained in
linear response at elevated temperatures and section 5 details
the dependence of these latter results on a magnetic field. We
summarize the results in section 6.

2. Cleaved edge overgrowth wires

Cleaved edge overgrowth [11] (CEO) is a technique that
enables the fabrication of long, uniform and ultra-clean
one-dimensional wires for research. The wires formed
are characterized by tight confinement and a large subband
separation. The channel transverse dimension can be made
as narrow as ∼100 Å and the separation between the 1st and
2nd subbands can be as large as ∼150 K [2]. In addition,
the wires are ultra-clean, with ballistic transport observed in
wires as long as 20 μm [12]. A gate electrode stretched
uniformly some 1/2 μm away from the channel controls the
charge density in the wire. With this geometry the charge
density in the wire, n, is expected to be uniform, given by n =
c
e (Vg − Vth) where c is the gate-channel capacitance per unit
length, Vg is the gate voltage and the threshold gate voltage,
Vth, is the gate voltage required to deplete the wire at low
temperatures. As we will show below, this specific capacitance
in our devices is rather small, necessitating large gate voltages
in the density range of interest. Therefore, corrections to
this capacitance, stemming from the finite compressibility and
its temperature dependence [13], are negligible. This simple
relation between the gate voltage and the density, also verified
via direct experimentation in CEO wires [15], is a central and
recurring theme in this manuscript. A measurement of the
specific capacitance allows us to infer the charge density and
hence the Fermi energy at all gate voltages and facilitates direct
quantitative comparison to theoretical models.

The wires are fabricated from a GaAs/AlGaAs het-
erostructures as illustrated in figure 1. The fabrication starts
with a high quality 2DEG created by molecular beam epi-
taxy (MBE) growth of a unilaterally doped GaAs quantum
well (QW) onto a [001] GaAs substrate. The resultant 2DEG
has a carrier density ns ≈ 2.5 × 1011 cm−2, and mobility
μ ≈ 4 × 106 cm2 V−1 s−1. Subsequently, this wafer is cleaved
inside the MBE chamber to expose a clean and atomically
smooth [110] surface, which is immediately overgrown with
a modulation-doped epitaxial layer sequence. The additional
remote Si dopants that are introduced by this overgrowth step
lead to a higher electron density near the cleaved edge of the
QW. As in conventional modulation-doped samples, a strong
built in electric field binds this excess charge to the cleaved
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Figure 1. Geometry of the CEO device: a high quality 2DEG is
created by MBE growth of a unilaterally doped GaAs quantum well
(QW) onto a [001] GaAs substrate. This wafer is then cleaved inside
the MBE chamber and a 2nd modulation-doped epitaxial layer
sequence is immediately overgrown onto the freshly exposed [110]
surface. The Si dopants that are introduced by this overgrowth step
lead to a higher electron density along one edge of the 2DEG. As in
conventional modulation-doped samples, a strong built in electric
field binds this excess charge to the cleaved edge interface, creating
1D bound states all along the edge of the GaAs QW. This wire
contains ∼10 electronic modes and coexists with a 2DEG that
resides in the QW plane and couples to the wire from the side. To
separate the 2DEG from the wire, pre-fabricated tungsten gate
electrodes are used to deplete the 2DEG underneath but preserve the
1D channel in this region along the edge. The width of the tungsten
gate thus defines the length of the isolated wire section (see text).

edge interface, creating 1D bound states all along the edge of
the GaAs QW. This wire contains ∼10 electronic modes and
coexists with a 2DEG that resides in the QW plane and cou-
ples to the wire from the side.

A pre-fabricated top gate electrode (see figure 1) allows
shaping of the 2DEG sheet. Biasing the gate depletes the
2DEG underneath and creates a stretch of one-dimensional
wire in front of it, which is now separated from the 2DEG.
The width of the gate defines the length of this isolated wire
section while the 2DEG areas on either side conveniently serve
as source and drain contacts to the wire. This geometry
lends itself to a straightforward two-probe measurement on
a quantum wire. Figure 2 shows the high quality, quantized
conductance steps observed in such a specimen as successive
1D subbands are being depopulated.

The conductance values at these plateaus, however, are
smaller than expected (g0 multiplied by the number of modes,
see figure 2). This trend has been repeatedly observed in
numerous CEO wires of various lengths (not shown). It
has been established via direct measurements [12] that this
conductance deficiency (excess resistance) does not come
about due to backscattering inside the wire. In fact a
four terminal resistance measurements with such wires have
revealed no significant resistance internal to the wire [14]. The
excess resistance rather reflects an imperfect coupling between
the wire and the reservoirs—falling slightly short of perfect
adiabatic coupling. This contact resistance is potentially
both temperature and bias dependent, a fact that complicates
quantitative assessments pertaining to the 0.7 structure that will
be addressed in the following sections. To circumvent such
difficulties, we concentrate mostly on the dependence of the
phenomenon observed on the charge density in the wire—a
study that has proven to be instructive in its own right.
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Figure 2. A representative result of a 2-terminal conductance
measurement of a CEO wire at a temperature, T ≈ 300 mK. A
voltage applied to a nearby gate forms a 2 μm long wire and controls
its charge density (see figure 1). Clear conductance plateaus arise,
attesting to the high quality of the wire. The value of the quantized
resistance is somewhat larger than the universal value of R0 [12].
The origin of this deviation is non-ideal coupling between the CEO
wire and its 2DEG source and drain contacts [14] (see text).

3. Non linear response of cleaved edge overgrowth
wires

The trace of the linear conductance shown in figure 2 exhibits
a series of regular quantized conductance plateaus. This
quantization of the linear conductance in ballistic wires is a
robust phenomenon—insensitive to the system details. All that
is required is the absence of backward scattering inside the wire
and adiabatic feeding of charge from the reservoirs into the
wire. This regular picture, however, becomes more complex
when the differential conductance is measured in the presence
of a large source–drain bias [1, 2] as shown in figure 3(a).

At low bias, the linear conductance exhibits weak
modulations with gate voltage about its mean value
of ∼0.85g0. As the bias is increased, the mean
differential conductance increases while the oscillatory
structure diminishes. Instead, a conductance peculiarity
emerges at low densities. Similar to the 0.7 structure data
observed in split gate constrictions, this feature becomes more
pronounced at larger applied biases. As can be seen in
figure 3(a), the conductance is a non-monotonic function of
the gate voltage in this range, with a mean value of about 70%
of its plateau value2. This conductance feature is distinct from
yet another conductance step, which occurs at a conductance
of ∼0.25g0 in our wires (see figure 3(a)).

We proceed by calculating the numerical derivative of
the differential conductance with respect to the gate voltage
(at fixed bias)—as shown in figure 3(b). This serves two
purposes: first, this quantity measures the sensitivity of the
conductance to the charge density in the wire. Therefore, the
bias dependence of the contact resistance, which is associated

2 The non-monotonic conductance behavior diminishes at elevated tempera-
ture. Above T ∼ 2 K we observe the more common 0.7 conductance step
(data not shown).
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Figure 3. Differential conductance versus gate voltage at different
biases. (a) Differential conductance of a 2 μm long CEO wire at a
bath temperature of 18 mK. An AC excitation of 18 μV was used in
conjunction with a DC bias of 0, 1, 2, 3 mV—blue, green, red and
black lines, respectively. The conductance anomaly at low densities
is more pronounced at a larger source–drain bias. (b) The numerical
derivative of the differential conductance at a 3 mV bias (black trace
in (a)), with respect to the gate voltage. This quantity highlights the
transitions between different conductance values, as shown. Inset:
the conductance plateau is bound by the 2nd subband at high
densities and by depletion of left movers at low densities—see text.

with the non-gated regions where the 1D density is fixed, is
eliminated form the resultant data. Second, this derivative
highlights the gate voltages where transitions between different
conductance values occur. It therefore allows us to follow
the conductance changes with both gate voltage and bias—as
shown in a color-plot format in figure 4. The color-coding is
such that red streaks in the data correspond to large derivative
and thus separate regions of different conductance values, as
indicated. Within each region the gate voltage dependence of
the differential conductance is weak.

The lowest red streak in figure 4 separates the zero-
conductance state, with a depleted wire, from the finite
conductance regions. This pinch off line exhibits a cusp
at small biases. In addition, the aforementioned weak
conductance oscillations are visible in the same bias range,
at larger gate voltages. Both phenomena disappear at an
elevated temperature of 4.2 K (not shown). These features are
inconsequential for the analysis in the following sections and
will therefore be ignored.

We now turn to a simple model for transport in a ballistic
wire in order to analyze the observed behaviors. The relevance
of this simple-minded model stems from the data, as will be
shown below. We consider free electrons induced by a nearby
gate into a clean 1D channel, which is coupled adiabatically to
two reservoirs. The Fermi energy in the wire is εF = h̄2k2

F/2m,
where m is the effective mass of an electron and the Fermi
wavevector, kF, is related to the electron density and hence to
the gate voltage via: kF = π

2 n = π
2

c
e (Vg −Vth). A finite energy

gap, �, separates the lowest wire mode from the 2nd subband.
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Figure 4. Trans-conductance versus gate voltage and DC bias: the
numerical derivative of the differential conductance with respect to
gate voltage (see figure 3(b)) as a function of gate voltage and DC
bias, in a color plot format. Data where taken with an AC excitation
of 18 μV at a bath temperature of 18 mK. The red streaks separate
regions of different conductance values, as indicated. The data is
largely symmetric with respect to the applied bias. The slight
asymmetry results from unintentional device asymmetry that varied
from device to device (not shown). Superimposed on the data are the
curves u�(Vg)—solid white line, and u0(Vg)—dashed dotted white
line (see text). The onset of the 0.7 anomaly corresponds to the
u0(Vg) curve, which marks the depletion of left (right) movers at a
positive (negative) bias (see figure 3(b) inset).

In order to facilitate an electrical current, an imbalance
between the electrochemical potentials of the source (right)
and drain (left) reservoirs is imposed. This bias, in turn,
establishes a difference between the chemical potentials of
the left and right propagating electrons in the wire (μ+ and
μ− respectively): μ+ − μ− = eu, with u the applied
bias. Importantly, the charge density in the wire is nearly
independent of this bias—remaining almost equal to the
equilibrium one. This arises because with a small gate-wire
capacitance, a large potential energy penalty is associated with
charge imbalance. Charge neutrality is thus facilitated by a
uniform shift of the potential in the wire, such that n+ + n− =
n or

√
μ+ + √

μ− = 2
√

εF. This potential shift reflects
the screening of the applied bias by the free charges and is
accomplished by two potential steps at the inlet and at the
outlet of the wire. Note that this potential shift equals half
the applied voltage [14] only at voltages much smaller than the
Fermi energy where particle–hole symmetry prevails.

At moderately low biases, the considerations above are
sufficient to calculate the two chemical potentials: μ± =
εF(1 ± eu

4εF
)2. These potentials are both bias and density

dependent, with the density dependence encoded in εF. Thus,
as the bias is increased two distinct situations may occur,
depending on density:

(a) For εF � 1
4�, a bias u� = 4εF

e (
√

�/εF − 1) will enforce
μ+ = �. Thus, a bias u > u� allows the 2nd subband
to participate in transport and an increased conductance is
expected (see figure 3(b)).

(b) Alternatively, for εF � 1
4�, a bias as large as u0 =

4εF/e will impose μ− = 0. With such a bias, the
electrons in the wire are unidirectional and the entire
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population propagates in the same direction—accounting
for the current (see figure 3(b)).

Indeed, we find that the line marking an increase in the
differential conductance beyond its plateau value corresponds
well to the curve u�(Vg)—as shown by the solid white line
in figure 4. The only free parameter here is the specific
capacitance, which we determine to be: c = 18.5 ±
0.5 aF μm−1. This measured value agrees very well with
independent measurements via tunneling spectroscopy in very
similar structures [15], as well as with estimates based on the
known geometry.

Remarkably, we find that at lower densities the curve
u0(Vg), i.e. the bias required for unidirectional dynamics,
agrees very well with the high density onset of the 0.7
structure—as shown in the same figure. Thus, the depletion of
left (or right) movers marks the occurrence of the 0.7 structure.
We emphasize that this curve is simply plotted onto the data
in figure 4 (dash–dotted white line) with no additional fitting
parameters.

The deduced capacitance amounts to some 115 electrons
per micrometer for each 1 V applied to the gate beyond the
pinch off value. Therefore, the 0.7 structure features presented
in figure 2 span a density of up to ∼50 μm−1, or a total of
∼100 electrons in our 2 μm long wire. In addition, as we will
show in the following section, the 0.7 structure is observed in
linear response in our wires at elevated temperatures in excess
of 10 K and at such temperatures extends up to densities of
∼30 μm−1, again corresponding to a large number of electrons
in the wire. Therefore this phenomenon occurs in long one-
dimensional wires. Long not only from the geometrical aspect
ratio perspective but also in the sense that there are numerous
electrons in the wire. We will further show in the next section
that the phenomenon appears in exactly the same density
range when a 6 μm long wire is used, clearly showing that
it represents a property of long one-dimensional wires.

Before turning to the behaviors observed at elevated
temperatures we return to the low-temperature non-linear
response data discussed above and examine the behavior at
even larger electron densities, when more than on subband is
occupied. We have taken similar data at larger gate voltages,
where the 2nd–6th wire modes are occupied, as shown in
figure 5. Evidently these data can be fitted to the same
model above, again with a striking level of agreement (see
figure 5). However, we find from our fits that the capacitance
between the gate to each channel increases by ∼10% per
channel. This behavior is to be expected because the transverse
charge distribution in the wire is controlled by the mode
wavefunctions and thus varies with mode index. This ‘wire
diameter’ variation is expected to affect the geometrical part
of the capacitance logarithmically. In addition, all the wire
modes are coupled, both via a direct capacitive coupling and
also because all modes share common reservoirs, dictating a
common electrochemical potential.

Drawing an analogy to the capacitance of a coaxial cable,
we estimate the capacitance between the gate and the j th mode
in our CEO wires as: c j = α2πε0εr/ ln(d/δ j), where δ j

is the half width of the wavefunction of the j th mode, d is

Channel index, j
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Figure 5. Trans-conductance of the upper wire modes: (a) the
numerical derivative of the differential conductance with respect to
gate voltage as a function of gate voltage and DC bias in a color plot
format. Data where taken with an AC excitation of 18 μV at a bath
temperature of 18 mK. The gate voltage range shown corresponds to
the 2nd–6th wire modes. Solid lines: u�(Vg) and u0(Vg) curves for
each one of the wire modes (see text). (b) Left panel, blue squares:
the capacitance between the gate and the j th wire mode, as
calculated in a simple model (see text), plotted against the mode
index. These capacitance values lead to the excellent agreement with
the data in figure 3(a) as well as in figure 2. Right panel, green
circles: the inter-channel gaps �i→i+1 , as deduced from the data.
The confinement energy of the 1st mode is ∼15 meV.

the distance to the gate and α is a proportionality factor—
accounting for the fact that the gate is planar rather than
concentric with the wire. Approximating the half width of the
j th mode by δ j = j · 100 Å [14] and using the known wire-
gate distance: d ∼= 5000 Å, we obtain an excellent fit for all the
data in both figures 4 and 5(a) with a single fitting parameter:
α = 0.1. This agreement shows that the overall capacitance is
dominated by geometry and the corrections due to the density
of states or the inter-mode coupling are negligible, as expected.

Our analysis matches the onset of the 0.7 structure with
depletion of either left or right movers in the wire. The
conductance value itself (g ∼ 0.7g0) remains unexplained.
Nor is the existence of yet another flat conductance region (g ∼
0.25g0) clarified. Both features in the differential conductance
were observed first in quantum point contact constrictions,
where the 2nd flat occurring near g ∼ 0.5g0. This latter
behavior was explained in [16] by employing a model that
assumes a large number, j , of quasi-1D modes present, and
thus ignores screening to predict: g = ( j − 1

2 )g0, at a bias large
enough to establish unidirectional dynamics in the j th mode.
Thus, with a single mode and screening ignored, a conductance
of 1

2 g0 is expected in this non-interacting electron model. In
contrast, a strictly charge-neutral wire is expected to exhibit a
zero differential conductance in this bias range; once the left
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Figure 6. Conductance versus gate voltage at different temperatures:
the linear conductance of a 2 μm long CEO wire, measured with an
excitation of 30 μV at various temperatures, is plotted against the
gate voltage. The conductance, divided here by the quantum
conductance, dwells at a value of ∼0.7 over a finite gate-voltage
range. This conductance anomaly extends over a wider density range
at higher temperatures (arrows).

movers are depleted, the number of right movers is dictated
by charge neutrality and since the resultant current, Imax =
8 e

h μ, is independent of bias, the differential conductance
is expected to vanish. With a finite wire-gate capacitance,
a self-consistent solution is likely to yield an intermediate
differential conductance; 0 < g < 1

2 g0 and may explain the
g ∼ 0.25g0 plateau observed here. We emphasize, however,
that this plateau occurs at a lower density (or a larger bias)
than predicted, while a larger differential conductance value,
g ∼ 0.7g0, persists over an intermediate parameters range.
We may therefore conclude that the 0.7 structure represents
an enhanced differential conductance—not accounted for in a
non-interacting electron model.

This unique situation of unidirectional electron occupation
discussed here is unlikely to occur in linear response at elevated
temperatures, where the 0.7 structure is also observed [1, 2].
Yet, this elevated temperature 0.7 structure does share some of
the basic characteristics and principles detailed above as will
be discussed in the next section.

4. Linear response at elevated temperatures

The temperature dependence of the linear conductance with a
2 μm long wire is shown in figure 6. The 0.7 structure is clearly
seen in the data. Similar to QPCs data, this feature becomes
more pronounced at higher temperatures, with its density range
increasing with temperature. A close inspection of the traces
in figure 6 shows that the value of the conductance at the first
plateau, gp, is by itself temperature dependent. It increases
from 0.85g0 at T ∼ 0.3 K and saturates to gp ≈ g0 by T ∼
10 K for this wire (not shown). This behavior, unique to CEO
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Figure 7. Normalized conductance versus gate voltage at different
temperatures: the conductance, normalized to its value at the 1st
plateau—gp, is plotted against the gate voltage. The temperature
ranges from 1 to 19 K with 2 K increments between traces. The
anomaly occurs at a conductance of 66–68% of the plateau value,
regardless of temperature.

wires, results from the temperature dependence of the contact
resistance. In the following we will focus on the density and
temperature dependence of the 0.7 feature. To circumvent
the temperature dependent contact resistance, we may employ
the same strategy as in the previous section—differentiating
with respect to gate voltage. It turns out, however, that it is
sufficient to normalize the conductance gate voltage traces to
their plateau values, as shown in figure 7. As can be seen
in this figure, the conductance peculiarity always occurs at a
conductance value of ∼0.66gp regardless of the exact value
of the plateau conductance. Clearly, the value of the contact
resistance itself is inconsequential. Further, we have been
able to observe the same behavior with an even longer (6 μm
long) wire and observe practically identical dependence of the
conductance on the density in the wire as shown in the inset
of figure 8. The phenomenon is robust and, to a large extent,
independent of the wire length.

We follow the evolution of the 0.7 feature with
temperature by measuring the gate voltage, V ∗, that marks
the transition between the main plateau and the 0.7 structure
(see figure 8). We define V ∗ as the gate voltage where
the conductance equals 85% of its plateau value, half way
between 0.7 and 1, and follow its temperature dependence. It
is worthwhile to evaluate the Fermi energy at this gate voltage,
ε∗

F, and discuss the temperature dependence of this Fermi
energy. In order to determine the specific capacitance needed to
evaluate ε∗

F, we repeated the non-linear transport measurements
described in the previous section—with this particular wire and
obtained a value of c = 19±0.5 aF μm−1, practically identical
to the one reported in the previous section.

In figure 9 we plot ε∗
F, deduced from the measured gate

voltages V ∗, against temperature for the two different wires
measured. As can be seen in this figure, this quantity is simply
proportional to temperature. Moreover, the coefficient of
proportionality equals unity, namely ε∗

F = kBT , as illustrated
by the solid line in the same figure . Thus, the crossover
from the conductance plateau into the 0.7 structure occurs as
the carriers in the wire are diluted to form a non-degenerate
system.

In order to pinpoint the 0.7 structure parameters regime,
we measure another characteristic gate voltage, Ṽ , which

6
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Figure 8. Characteristics of the 0.7 structure: the conductance at
T = 3 K, normalized to its plateau value, is plotted against the gate
voltage. Two characteristic gate voltages are indicated (arrows):
V ∗ corresponds to the transition between the plateau and the 0.7
structure, and Ṽ marks the high-density extent of this feature (see
text). The threshold gate voltage, Vth is also indicated. These
quantities are use in conjunction with the specific capacitance to
deduce the charge density in the wire. The expected conductance
within a free electron model is easily calculated once the density is
known (see text). The resulting curve (dotted line) is added onto the
data and is seen to underestimate the measured conductance at low
densities. Inset: comparison between wires of different length: we
portray the conductance of a 2 μm long wire (red solid line (in the
electronic version of the journal)) and that of a 6 μm long one (blue
solid line (in the electronic version of the journal)), both plotted
against the density in the wire. The behavior is identical to within our
ability to determine zero density. Data were taken at a temperature of
6.74 and 7.00 K, respectively. The density was deduced from the
deviation of the gate voltages from the pinch off values (different for
the two wires) and using the same specific capacitance
(18.5 aF μm−1). The conductance was normalized to its respective
plateau value (0.7g0 and g0 for the 6 and 2 μm long wire,
respectively).

corresponds to the extent of the 0.7 structure itself (see
figure 8). Since the 0.7 structure in our wires occurs when the
conductance equals 66–68% of the plateau value, we defined Ṽ
as the gate voltage where the normalized conductance equals
0.69. In other words, Ṽ is defined such that the conductance
anomaly occurs in the density range 0 ≈ n � n(Vg = Ṽ ).3

We plot the corresponding Fermi energy against temperature
in the same figure. Clearly, the 0.7 structure occurs deep in
the non-degenerate regime; kBT � 2 1

2εF. It is interesting
to note that the 0.7 structure occurs when the occupation of
zero momentum states, at the bottom of the subband, is not
saturated. This is true whether this arises due to a high enough
temperature or a large enough bias—as in the previous section.
Clearly the curvature of the dispersion relation is important in
both cases.

We now turn to a comparison between the data and the
conductance expected in a non-interacting model. Surely
the conductance through a wire vanishes when it is depleted
of charge, regardless of correlations. It is the way that
the measured conductance diminishes with density at a finite
temperature that we would like to compare to a non-interacting
model. With free electrons in a reflection free single mode

3 The conductance declines toward zero when the density in the wire is
very small, 2–3 times smaller than the one at the high-density edge of the
0.7 structure. Therefore, this feature extends to a Fermi energy as small as
∼kBT/15.

Figure 9. Phase diagram of the 0.7 structure: the Fermi energy in the
wire at the transition between the plateau and the 0.7
structure—ε∗

F = εF(Vgate = V ∗) (open symbols) and the one marking
the high density edge of this feature—ε̃F = εF(Vgate = Ṽ ) (filled
symbols) are plotted against temperature. Data were taken from two
different wires, both 2 μm long (diamonds and circles). The data
appear linear in this energy–temperature plane, attesting to the 1D
nature of our device. The line εF = kB T is added onto the data (solid
line) and is seen to match ε∗

F. The shaded area at the bottom of the
figure corresponds to the 0.7 structure region—clearly in the
non-degenerate regime. The measured conductance dwells at
g ∼ 0.7 down to very low 1D densities (see footnote 3), as illustrated
by the dashed line.

wire, the well-known cancelation between the velocity and the
density of states leads to a simple expression for the linear

conductance: g/g0 = f (ε = 0), where f (0) = 1/(1 + e
−μ

kB T )

is the Fermi function evaluated at zero energy: the chemical
potential is related to temperature and density via: n =∫ ∞

0 dε [ν(ε) f ((ε − μ)/kBT )] where ν(ε) = 2/h
√

2m/ε is
the density of states.

We have evaluated this chemical potential numerically and
added the resultant conductance trace onto the data in figure 8.
Evidently, the fact that the conductance decreases significantly
below its plateau value as the Fermi energy is reduced by
the gate voltage to match kBT is not very surprising and is
in fact expected from this model. The surprising feature is
the excess of conductance at lower densities. Similar to the
low-temperatures non-linear response described in the previous
section, here again the measured conductance is too high to be
accounted for by a free-electron model.

5. Magnetic field dependence

The magnetic field dependence of the linear conductance was
measured with a magnetic field, B , aligned (to within ∼3◦)
along the current flow direction in a 2 μm long wire. Traces of
the conductance versus gate voltage at a few selected magnetic
fields and a temperature T ∼ 250 mK are portrayed in
figure 10. With increasing field, the 0.7 structure evolves into a
wider conductance step with its value decreasing with field to
equal 1

2 g0 = e2/h in the high field limit [17].
This high field behavior is to be expected; a magnetic

field lifts the spin degeneracy and splits each subband into two
spin branches separated by a Zeeman gap �spin = gμB B .
Here μB is the Bohr magnetron and g is the electronic

7
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Figure 10. Conductance versus gate voltage at different magnetic
fields: the linear conductance of a 2 μm long CEO wire, measured in
the presence of a magnetic field (as indicated), is plotted against the
gate voltage. The magnetic field was aligned along the wire. The 0.7
conductance anomaly evolves into a 1/2 plateau that extends over a
wider density range as indicated by arrows (see text).

g-factor. Therefore one would expect (within this non-
interacting picture) that in the density range where only one
(spin resolved) subband is populated the conductance would
acquire a half step value—reflecting the reduction in subband
degeneracy. This is expected to occur in the density range
where the Fermi energy is smaller than the Zeeman gap.
Note that the lifting of spin degeneracy also affects the Fermi
wavevector—being twice as large as the zero field value.
Therefore the spin-polarized Fermi energy is four fold larger;
ε

sp
F (n) = 4εF(n).

We have measured the gate voltages, V̂g, corresponding to
the onset of conduction increase from its 0.7 structure plateau
value. In the absence of a magnetic field this gate voltage
matches the high-density extent of the 0.7 structure (Ṽg in
the previous section). Therefore in essence we are following
the evolution of this gate voltage with field. Employing
the known gate-channel capacitance, we have calculated the
spin-polarized Fermi energy for each applied magnetic field
data set. The evolution of this quantity with magnetic field
is depicted in figure 11. This maximal Fermi energy, ε̂

sp
F ,

increases with field and acquires a linear field dependence at
high fields beyond a characteristic field of B ≈ 5 T. We find
that this linear field dependence matches the expected behavior
ε̂

sp
F = gμB B with g = −0.44, the bulk GaAs electronic g-

factor (see figure 11). This agreement further corroborates the
value of the specific capacitance value, independently deduced
from non-linear transport data. The value of the 0.7 structure
conductance step also evolves with field. It reduces with field
and saturates to a value of 1

2 g0 at high fields, with the same
characteristic field. This behavior is illustrated in the inset of
figure 11.
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Figure 11. Evolution of the 0.7 structure with magnetic field: the
Fermi energy at the onset of conductance increase beyond its step
value is plotted against magnetic field. This Fermi energy was
calculated from the gate voltages, V̂gate, (see figure 9) extracted from
data taken at T ∼ 250 mK (solid squares) and 1.5 K (open circles).
Complete spin polarization is assumed for the purpose of evaluating
ε̂F. The line ε̂F = gμB B is added onto the data (solid line) and agrees
very well with the T ∼ 250 mK data beyond a field of ∼5 T (see
text). Inset: the value of the conductance step is plotted against field.
Data was taken at T ∼ 250 mK (solid squares) and 1.5 K (open
circles). The low-temperature conductance value is seen to evolve
with field from ∼0.7 to 0.5 with the same characteristic field of ∼5 T
(the values in the inset’s abscissa refer to the magnetic field in tesla).

We have repeated this entire procedure at higher
temperatures and found that the characteristic magnetic field
increases with temperature, quickly escaping our available
field window (B � 12 T) at a moderate temperature of ∼2 K.
The behavior at T = 1.5 K was added to figure 11 and its
inset to illustrate this behavior. This behavior comes about
due to the smallness of the g-factor in GaAs, which in turn
has prevented us so far from examining in detail the pinch off
characteristics of a spin-polarized wire: an interesting question
is whether an analog of the 0.7 structure can be observed in
the spin-polarized case. There is no evidence to such 0.7 e2

h
behavior to date. However, achievable ratios of the Zeeman
gap to temperature are much smaller than the ratio of subband
gap to temperature in the absence of a magnetic field. We are
therefore limited to a smaller parameters window with spin-
polarized electrons. One can of course reduce the temperature
to allow a larger Zeeman energy to temperature ratio. However
this strategy will push the density range where this alleged
feature would exist to ever lower densities. With such low
densities one would need much longer wires to accommodate
even a handful of electrons, a task too difficult currently even
with our ultra-clean CEO wires. This question therefore awaits
experimentation at larger magnetic fields or cleaner and longer
wires.

Finally, we would like to clarify a point that has been
confusing for us at first. Within a non-interacting model and
in the limit of zero temperature, the Fermi energy at low
densities increases with field as spin polarization commences
and spin degeneracy is lifted. One could therefore question
our conclusions that the 0.7 structure occurs in linear response

8
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Figure 12. The evolution of the non-interacting conductance with
magnetic field at a finite temperature: the conductance in the
presence of a spin gap and at a temperature of 4.2 K was calculated
within a non-interacting model (see text). The resultant traces (color
lines (in the electronic version of the journal) as indicated in legend)
are added to a plot of the measured conductance (solid black curve).
The applied gate voltage is translated to an electron density via the
specific capacitance, independently deduced from non-linear
response (see text). This plot clearly shows that the observed
conductance is larger than the one expected in a non-interacting
model, regardless of spin polarization.

when the Fermi temperature is more than two fold smaller
than temperature and that the observed conductance is larger
than the expected value. This line of thought, however, is
incorrect because spin polarization also causes halving of the
conductance due to the same lifting of degeneracy. The net
effect is a reduction of the conductance with spin polarization
at a given density and temperature. The expected behavior at
a temperature of 4.2 K and various spin gaps is illustrated in
figure 12, where these results are contrasted with data taken at
the same temperature and at zero magnetic field. The curves
where calculated along the same lines described in section 4,
accounting for two separate spin bands separated by a gap �

and sharing a single electrochemical potential. Clearly the
conductance measured at low density is larger than expected
from non-interacting electrons, regardless of spin polarization.

6. Summary

Wires fabricated via the cleaved edge overgrowth technique
have allowed us to offer a quantitative account of the 0.7
structure. The geometry used facilitated a reading of the
applied gate voltage as a uniform charge density in the
wire, which is in turn supported by numerous aspects of
data taken in gate-wire devices. This simple insight has
led us to some striking conclusions. We have found that
the conditions under which this phenomenon is observed
are far from the low-temperature linear-response regime,
commencing when either the temperature or the bias greatly
overwhelm the Fermi energy. Further, we find that the non-
interacting conductance, unsophisticatedly calculated within a
free electron model, underestimates the measured value. This
conductance enhancement, presumably due to e–e interactions,
remains in our view poorly understood.
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